How to face the new classification of primary angle closure glaucoma 如何面对原发性闭角型青光眼的新分类
This paper analyses and conceives the application of the face classification in the field of Chinese landscape architecture. It revised the DC metadata and the extensible elements of it. This paper also puts some suggestions of organization of network information resource. 研究并构想了分面分类法在园林行业中的应用,修订了DC元数据及其扩展元素,并对网络信息资源组织提出了若干建议。
Human face classification method based on chin contour 基于下颌轮廓线的人脸分类方法
Fully Mathematics is Used in Work Face Classification 模糊数学在回采工作面分类中的应用
Generally speaking, face recognition system is made up of five groups, which are called face detection, location and tracing, face representation, face recognition, expression/ gesture analysis and face physical classification. 人脸识别系统从广义上说大致可以分为人脸检测、定位与跟踪,人脸表征,人脸识别,表情/姿势分析,生理分类等五个方面。
In this paper, the kernel function method is used to extract the high order relations, and the Linear Support Vector Machines ( LSVM) is selected to perform the face classification. 该文利用核函数方法提取像素高阶相关,并与线性SVM相结合来进行人脸识别。
Recent years, support vector machine has obtained great success in the fields of handwriting identification, human face identification, text classification and so on. 近年来,支持向量机在手写体识别、人脸识别、文本分类等领域取得了很大的成功。
A study on Chinese Human Face Based on Bayesian Classification Method 基于中国人人脸区域特征的贝叶斯分类法研究
Research on the Human Face Detection and Its Classification 人脸图像检测及分类系统的研究
A method for human face classification and recognition is proposed in this paper. 文中提出一种人脸分类及识别方法。
Face Classification Based on Shape Features 基于形状特征的人脸分类研究
Most face classification approaches pay more attention to dealing with noise samples, but ignore the influence of selected feature space. 在考虑关于人脸的分类算法时,大多是评价分类算法对噪声样本的容错性,而忽视了特征空间维数的选取与相似性度量准则之间的关系。
Study on Revision Proposal of Coal Face Roof Classification for Gently Inclined Seam(ⅱ) 缓倾斜回采工作面顶板分类修订方案的研究(下)
A novel algorithm for chin contour extraction and a face classification method using chin contour are presented. 提出一种在识别中有效利用下颌轮廓特征进行人脸分类的方法。
Proposes generative model based on Local Visual Primitives ( LVP) for face modeling and classification. 提出了一种基于局部视觉基元(LocalVisualPrimitives,简写为LVP)的产生式模型,并用于人脸重建和识别中。
And how to use the support vector machine to solve the one-to-many problems on face classification. 重要研究了支持向量机的基本原理以及如何用支持向量机来解决一对多的人脸特征分类问题。
Transferring face recognition classification work from original observation space to feature subspace and reasonable dimensionality reduction can remove noise and speed up the computation, then the recognition process is more effective. 将人脸识别分类工作,从原观测空间转换到特征子空间中进行,合理的降维既能排除众多噪音的干扰,又可加速处理计算,使识别处理更加有效。
In addition, whether face detection and classification, if a better face feature data are selected and effective method of face feature extraction is a prerequisite to ensure good results. 另外,不管是人脸检测与分类,若有较好的人脸特征数据,即选取有效的人脸特征提取方法,是保证效果良好的前提。
According to face detection, eye location, face feature extraction and classification algorithms, the intelligent attendance system based on face recognition technology has been designed and implemented. 结合人脸检测、人眼定位、人脸特征提取和分类算法,设计并实现了基于人脸识别技术智能考勤系统。
At the same time, face authentication and gender classification also have achieved many progresses as a branch of face recognition. 同时人脸验证和性别识别作为人脸识别领域的重要分支,近年来也取得显著突破。
In this paper, the author presents a multi-view face gender classification framework based on face image, and selects feature using HOG analysis and SVM. 在本论文中,作者探索了基于图像的多角度人脸性别识别框架,并结合梯度直方图分析及支持向量机对特征进行选择,有效的提高了分类算法的性能。
The algorithm mainly includes facial expression images preprocessing, facial expression feature extraction and dimensionality reduction, face classification and recognition. 该算法主要包括表情图像预处理、特征提取和降维、分类识别三部分。
This paper studies multi-view face gender classification and feature selection. 本课题进行多角度人脸图像的性别分类和相应的特征选择研究。
Enhance the ability of face classification. Finally, sum up the thesis, analyze the current research in the need to be further improved, pointed out the direction for future work. 增强了人脸的分类能力。最后总结了全文,分析了目前研究工作中需要进一步完善的地方,指出今后工作的研究方向。
This can improve the identification precision and time. Secondly, A kind of face classification algorithm was put forward based on RBF neural network optimization classification. 提出基于优化径向基函数神经网络的人脸分类算法。
The experimental results show that, the algorithm can be run well on face image classification and recognition comparing with other algorithms. 实验结果表明,与其它算法比较,此算法能够对人脸图像进行良好的分类识别。
In this thesis, we study and enrich the applications of sparse representation in face classification and feature extraction. 本文研究并丰富了稀疏表示在人脸分类和人脸特征提取中的应用。
To further illustrate the effectiveness of the algorithm, this algorithm is applied to the classi-fication of handwritten characters and face classification algorithm as a preprocess and get satisfactory results. 为了进一步说明此算法的有效性,本文将此算法应用于手写字分类和人脸分类算法的预处理过程中,得到了预期的效果。
The result of noisy face classification experiments of BioID face database shows that TM-v-M ( CV) 2SVMs have better classification performance and anti-noise performance. 通过在BioID人脸数据库中进行的噪音人脸分类实验证明,TM-v-M(CV)2SVMs具有更好的分类性能和抗噪性能。